解方程一教学反思

时间:2024-04-19 09:58:08
解方程一教学反思

解方程一教学反思

作为一名优秀的教师,课堂教学是重要的工作之一,借助教学反思我们可以拓展自己的教学方式,那么问题来了,教学反思应该怎么写?下面是小编为大家收集的解方程一教学反思,仅供参考,欢迎大家阅读。

解方程一教学反思1

学生从五年级就开始接触简易方程,经历一年多的学习对于方程有了一定的认识,然而为何要设单位“1”的量为未知数这个问题在列方程解决稍复杂的分数实际问题时就一直困扰着学生。列方程解决稍复杂的百分数实际问题是小学阶段的最后一个有关方程学习的单元,因此有必要从本质上去拨开学生心中为何要设单位“1”的量为未知数的那团云。正好借助这节课通过对比分析的方法帮助学生很好的解决这个困惑。

案例描述:苏教版数学六年级下册教材

教材例5:朝阳小学美术组有36人,女生人数是男生人数的80%。美术组男生、女生各多少人?

学生能很快根据题目条件进行相关的找单位“1”分析数量关系的解题前期准备,经历这这两步后学生通过已有经验可以很快确定用方程的策略来解决这个问题。

在教学的过程中,笔者故意提出:这里男生人数和女生人数都是未知的,那么你们觉得怎样设未知数比较合理呢?学生在底下开始异口同声地回答设单位“1”的量也就是男生人数为未知数比较合理。设美术组有男生x人,女生就有80%x人。那么根据等量关系式:男人人数+女生人数=36学生很自然地列出方程

x+80%x=36。就在大家十分“得意”的时候,一个小男孩发表了自己不同的意见:“也可以把女生人数设为x。”刚开始很多同学觉得有点不可思议,以前做这类问题不都是将男生人数(单位“1”)设为未知数x的吗?抓住这个千载难逢的机会,我就让他说说他是怎么想的。他是这么说的:设女生人数是x人,男生人数是x÷80%人,根据等量关系式:男人人数+女生人数=36列出方程:x+x÷80%=36。听完他精彩的发言,大家恍然大悟,原来还可以这样?

仔细回想这个聪明男孩的问题,原来数学真的需要动脑。这个问题在学习分数除法之前教材是一直在回避的,到了这里我灵机一动将题目改成:教材例5:朝阳小学美术组有36人,女生人数是男生人数的2倍。美术组男生、女生各多少人?那你觉得这个问题我们以前是怎么解决的?学生很自然的想到把一份数男生人数设为x人,女生有2x人,方程:x+2x=36。那如果一定要把女生人数设为x人呢?学生思考了一会列出:x+x÷2=36,这个方程没有学习分数除法之前学生是没有办法解出来的,可能这就是教材一直回避的重要原因吧。但是学生学习了分数除法,理解了分数和百分数的意义之后凭借自己的理解列出超乎常规的方程的勇气是值得肯定的。经过这两个问题的对比,学生明白了设未知量也是很重要的。课上到这里,并不是去推翻学生已有的经验,而是让学生有这样一种意识:数学很多时候不是一种硬性规定,遇到这类问题只能设单位“1”的量为未知数。于是我顺水推舟让学生比较了这两个方程:x+80%x=36、x+x÷80%=36哪一个解起来不较容易?学生通过计算终于明白:x+80%x=36方程的优越性,于是又回到了:男生人数和女生人数都是未知的,那么你们觉得怎样设未知数比较合理呢?通过这样的对比进一步让学生体验到了:设男生人有x人(单位“1”的量为未知数的)合理性,不仅仅能很快表示出女生80%x人,而且x+80%x=36是学生熟悉的形如:ax+bx=c(这里a,b,c已知),而x+x÷80%=36这个方程不是学生熟悉的类型,是需要学生根据除法将它转化为ax+bx=c,这一步转化至关重要。经过上述的两次对比学生终于明白了:为什么在设未知量的时候一般要把单位“1”的量设为未知数了。有了这样的深刻的体验,学生解决这类问题就十分自然,心中的困惑可能就会烟消云散。

解方程一教学反思2

方程是应用非常广泛的数学工具,它在义务教育阶段的数学课程中占重要地位。一元一次方程是最简单、最基本的代数方程,它不仅在实际中有广泛的应用,而且是学习二元一次方程组、一元二次方程、分式方程等等知识的.基础。解方程既是本章的重点,也为今后学习其他方程、不等式及函数有重要基础作用。为了使学生牢固掌握解方程体会方程是刻画现实世界的一个有效的数学模型,产生学习解方程的欲望,教材设置了新颖的问题情境,让学生从具体的情境中获取信息,列方程,然后尝试主动探究方程的解法。并通过练习归纳掌握解方程的基本步骤和技能。

本节课的整体过程是这样的:先利用等式的性质来解方程,从而引出了移项的概念,然后让学生利用移项的方法来解方程,第一次接触这部分内容,所以在方程的选择上,都是移项后,同类项的合并比较简单,与前一节内容相比较,可轻易感受到这种解法的简洁性;讲解完成后,进一步给出了练一练的两个方程,让学生动手去做;仔细观察学生的练习过程,出现了很多困难。

总结一下,大致有以下几种比较常见的情况:①含未知数的项不知道如何处理;②移项没有变号;③没移动的项也改变了符号;针对以上情况,利用课堂时间,先让有困难的学生说一下自己在解题过程中出现的困难,让其他同学帮助他找出错误并加以解决,这样更能促进同学间的相互进步。由于时间的关系,本节课这一点做得还不够完善,可从学生的课堂练习中反应出来。再让学生总结注意点,教师进行点拨。最后的学生小结并不是一种形式,通过小结教师能很好地看出学生的知识形成和掌握情况。

总的来说,虽然课堂上同学们总结错误点总结得不错,但学生对解方程的掌握仍浮于表面,练习少了,课后作业中的问题也就出来了;第一,解题中部分同学仍采用原来的等式性质进行;第二,移项时符号还是一个大问题;所以总的说来,这课堂效率不高,没有完成基本的课堂任务;学生一节课下来还是少了练习的机会,看来对求解的题目,课堂上需要更多的练习,从题目中去反馈会显得更加适合。在新教材的讲解中,有时还是要借鉴老教材的一些好的方法。另外,本节课没完成的任务,希望能在下面的时间里尽快进行补充,让学生能及时对知识进行掌握。

我始终遵照“坚持启发式,反对注入式”的教学原则。即在课堂上,凡是学生自己努力能解的方程都应由学生自己解决完成。

解方程是重点,要求人人过关。通过实验教学,达到预期满意效果。不仅有利于学生的学习,更有利于教师的发展。

解方程一教学反思3

新课程的改革,使得小学的知识要体现与初中更加的接轨,五年级上册第四单元“解简易方程”中进行了一次新的改革。要求方程的解法要根据天平的原理来进行解答,也就是说要通过等式的性质来解方程,这一方法虽然说让方程的解法找到了本质的东西,但是也让我感到了许多困惑

1、从教材的编排上,整体难度下降,有意避开了,形如:45-x=23等类型的题目。把用等式解决的方法单一化了。在实际教学中我们要求学生较熟练地利用等式的方法来解方程,但用这样的方法来解方程之后,书本不再出现x前面是减号或除号的方程题了,学生在列方程解实际应用时,我们并不能刻意地强调学生不会列出x在后面的方程,我们更头痛于学生的实际解答能力。在实际的方程应用中,这种情况是不可避免的。很显然这存在着目前的局限性了。对于好的学生来说,我们会让他们尝试接受--解答x在后面这类方程的解答方法,就是等号二边同时加上x,再左右换位置,再二边减一个数,真有点麻烦了。而且有的学生还很难掌握这样方法。

2、内容看似少实际教得多。难度下降后,看起来教师要教的内容变得少了,可以实际上反而是多了。教师要给他们补充x前面是除号或减号的方程的解法。要教他们列方程时怎么避免x前面是除号或减号的方程的出现等等。

解方程一教学反思4

开学两周了,经过开学后的适应,教学工作已经逐步进入了正常轨道。其实说是适应,只是我的适应,孩子们并没有表现出所谓的"开学综合征",开学近两周他们都表现得很棒!本来刚开学,担心孩子们收不回心来,一直布置很少的一点家庭作业,甚至有时候只是布置预习而已。当然,这样做也许也确实让孩子们能逐渐进入学习状态,避免出现开学倦怠或反感情绪。

在知识方面,原来担心孩子们对方程会有不适应或抵制情绪,结果孩子们都表现不错。方程解法的繁琐并没有让孩子们感到厌倦,因为虽说解方程书写步骤较多,但规律明显,顺向思维不需要过多的思维过程,抓住关键词列方程就迎刃而解了。最近主要的问题是形如12-x=5或56÷x=14这样的方程,用等式的性质来解很别扭,而用传统的方法又怕孩子混淆。其实这个问题教材在设计时早有考虑,原则上这种类型的方程不做要求,因此课本上并没有出现这样的题目。但孩子们在解决问题时自己会列出这样的方程,只好临时先提醒孩子尽量避免列出x在减数或除数位置上的方程。这样做的目的并不是要刻意回避这种问题,而是考虑到孩子们对现在的方法还不够熟练,不宜教给他们另外一种全然不同的解法,这个问题且等孩子们熟练掌握了解方程的方法后再说吧!反正教材是不要求做这种题的。

还有个问题就是在解决问题时,算术方法与列方程的选择。最近一直在学习列方程解应用题,所以孩子们想当然地每道题都列方程解答。教材上虽然有一道题目是指导孩子体验理解用算术方法与方程方法解决问题的区别,能直接套用公式或顺向思维列式的就直接用算术方法解决比较简捷,用逆向思维考虑的问题可以用方程解决比较简捷。可能是由于初学,或者因为没有养成认真分析数量关系的习惯,孩子们在这方面还比较困惑,需要在以后的教学中指导孩子们逐步理解和掌握。慢慢来,不要急。

解方程一教学反思5

本节主要教学目标是使学生通过结合具体实际问题的分析与解决,导出形如ax±b=c和ax±bx=c形式的方程,并结合原有旧知——等式的性质推导出解法步骤,同时利用这些方程来解决一些实际问题,丰富学生的解题方法,提高学生解决问题的能力。

通过几课时的教学与练习,学生在掌握方程解法上没有问题,说明学生对等式的性质掌握的比较扎实。但在运用方程解决一些实际问题时,部分学生表现出缺少一定的分析习惯和缺乏一定的分析能力,造成在解决问题(特别是一些例题的变式题)时产生较多错误。

通过前后练习的比较、观察,发现产生上述问题的主要原因在于学生在练习时偏重模仿和记忆,缺少具体分析的意识。从而造成在碰到一些变式题时就明显缺少解题策略,学生在读题后首先想到的不是去思考题中有怎样的数量关系,而是在记忆中极力搜索“这个问题以前有没有讲过?或跟哪个问题是一样的?”等旧痕迹。然而这些变式题的解答难就难在它与例题有密切的联系,但又有区别。如果学生不能找到其中的区别和练习,光靠模仿和记忆,那就很难正确解答了。因此,在教学中教师要注意学生重模仿轻分析的学习方式,在练习中要加强数量关系的分析,注重学生对解题思路的表述。教师要强调学生读题后先分析并写出等量关系,每个实际问题的解答过程中都要设计等量关系的分析与交流,从潜意识中使学生重视起对问题的分析与判断。一开始学生可能在分析、判断等量关系时还会模仿例题的形式,因此在学生对基本类型有了一定的感悟后,要有针对性的出现变式题让学生来解决,使其在认知冲突中进一步感悟先分析、判断等量关系的重要性。但同时教师也要十分清楚的认识到寻找等量关系对于课改后的六年级学生来讲,并不是一件容易的事,除了缺少一定的意识外,更重要的是缺乏一定的分析能力。

产生这种情况的原因主要有两个,一是在新教材的编排中,在六年级前很少涉及甚至没有安排过等量关系寻找的内容。正是由于教材中忽视了这方面内容的安排,也就引起了第二个原因——教师和学生都忽视了寻找等量关系能力的培养。等到六年级要大量具体涉及到时,就发现学生很不适应了。如何提高学生寻找题目中等量关系的能力,就成了教学的一个重点,也是一个难点。为了提高学生等量关系的分析能力,除了如前所述要加强意识培养外,还应在具体方法上加以指导。而用线段图来表示题目中的条件和问题,是一种非常有效的提升学生分析、判断等量关系的方法,教材在例题分析中就先借助了线段图来分析,从而帮助学生找出题中的等量关系。在实际教学中我深深地体会到了画线段图来表示条件和问题,从而形象的表示出等量关系的有效性。同时,在教学中不能因为问题简单或赶进度而忽视画线段图表示条件和问题的环节。一开始学生可能由于以前缺少一定的训练而显得有些不适应,但经过几次的努力后,学生就能很快提高作图能力,从而有助于等量关系的寻找。

综上所述,在列方程解决实际问题的教学中,教师首先要注意学生学习方式的培养,从偏重模仿和记忆中逐步纠正过来,逐步建立具体分析的意识。其次是要培养学生用线段图表示题目中条件和问题的能力,借助线段图的表示形象的表现出相关的等量关系,提高学生寻找等量关系的能力,从而进一步提高学生列方程解决实际问题的能力。

解方程一教学反思6

有昨天加减法方程作铺垫,今天乘除法方程的解答可以说是顺水推舟,毫不费力。学生完全能够通过迁移自主探索出解法。但令我头痛的是如何引导学生会解形如a-x=b及a÷x=b方程。

本以为按新课标教材这两类方程小学阶段不用掌握,但在学期初教材分析会上教研员明确指明:这两类方程教师必须作为例题向学生补充讲解,且属于学生必会、考试必考内容。原因如下:1、在列方程解决实际问题时,学生中往往会出现以上两种类型方程,教师难以回避。2、如果教师有意回避,会使学生产生等式的基本性质只适用于部分方程的错误理解。

基于上述原因,我今天在教学完例2后为学生补充了相应内容,但教学效果较差。虽然许多学生能根据加减乘除各部分之间的关系推导出x的值,但当要求他们根据等式的性质来解答时,尝试成功。通过指导,全班也只有50%左右的学生基本掌握解答的方法。分析此次教学失败的原因可能是安排的时机还不够成熟。因为学生刚接触解方程没多久,还须一段时间巩固教材中最基本的常见方程类型,而今天补充的两种类型虽然与例题一样,都是根据等式的基本性质,但在解答第一步时不再是思考“怎样才能使天平左边只剩x,而保持天平平衡”的问题了。学困生听完拓展练习后,作业中出现明显混淆的现象。如5x=1.5本应根据等式的性质直接将等号两边同时除以5求解的,可却有学生先将等式两边同时除以x,变成了“1.5÷x=5”,这可真是越变越复杂。

值得思考的是,如果必须两教a-x=b及a÷x=b两类方程,你们觉得是按加减乘除法各部分之间的关系教好呢,还是按等式的性质教学好呢?

解方程一教学反思7

一、设计思路:

在学习本章之前已学过了一元一次方程的解法,对解整式方程特别是一元一次方程的解法思路比较了熟悉,在教受本节课是要改变教师讲例题,学生模仿的教学模式,通过说一说,试一试,想一想,练一练等多个教学环节,

由学生预习,自主学习,然后再由教师考查和点拨,但是由于种种原因,最终决定给学生一个半开半闭的区间,我先作一示范,学生练习格式,接着出现没有根的练习题,依然让学生解决,由于学生不会检验培根的情况,所以,再详究没有根产生的原因,怎样检验没有根等问题。

这节课的关键在前面的这步过渡,究竟是给学生一个完全自由的空间还是说让学生在老师的引导下去完成,我们先后作了多次试验和论证,认为“完全开放”符合设计思路,但是学生在有限的时间内难以完成教学任务,故我们最终决定采用第二套方案。

二、教学知识点:

在本课的教学过程中,我认为应从这样的几个方面入手:

1.分式方程和整式方程的区别:分清楚分式分式方程必须满足的两个条件,⑴方程式里必须有分式,⑵分母中含有未知数。这两个条件是判断一个方程是否为分式方程的充要条件。同时,由于分母中含有未知数,所以将其转化为整式方程后求出的解就应使每一个分式有意义,否则,这个根就不是原方程的根。正是由于分式方程与整式方程的区别,在解分式方程时必须进行检验。

2、分式方程和整式方程的联系:分式方程通过方程两边都乘以最简公分母,约去分母,就可以转化为整式方程来解,教学时应充分体现这种化归思想的教学。

3、解分式方程时,如果分母是多项式时,应先写出将分母进行因式分解的步骤来,从而让学生准确无误地找出最简公分母

4、对分式方程可能产生没有根的原因,要启发学生认真思考和讨论。

《解方程一教学反思.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式